Jumaat, 24 Julai 2015

jalan kira pecahan

Hasil Pembelajaran
  1.    Menambah nombor bercampur dengan nombor bulat.
  2.   Menambah nombor bercampur dengan pecahan wajar yang penyebut pecahan sama.
  3. Menambah dua nombor bercampur yang penyebut pecahannya sama.
MASIHKAH ADIK-ADIK INGAT?

terdapat jenis PECAHAN

                               (pecahan wajar)                   (pecahan tak wajar)        (nombor bercampur)

Nombor bercampur terdiri daripada:


pembelajaran pada hari ini tertumpu kepada PENAMBAHAN 

lihat contoh-contoh di bawah:

nombor bercampur +  nombor bulat
INGAT ADIK-ADIK!!

Sekiranya nombor bercampur ditambah dengan nombor bulat, maka;
TAMBAH NOMBOR BULAT terlebih dahulu.

contohnya:
1 1/2 + 1 =1+1+1/2 = 2 1/2

nombor bercampur  pecahan wajar yang sama penyebut

TAHUKAH ADIK-ADIK?

1 1/4 + 1/4 = 1 2/4
namun begitu,
1 2/4 ialah SETARA dengan 1 1/2
..oleh itu..
jawapan adik-adik hendaklah ditulis dengan pecahan setara yang kecil

nombor bercampur +  nombor bercampur (penyebut yang sama)


maka adik-adik,
TAMBAHKAN nombor bulat terlebih dahulu
kemudian,
barulah TAMBAHKAN pecahan

1 + 1 = 2
1/4 + 1/4 = 1/2
2 + 1/2 = 2 1/2
^ selamat mencuba adik-adik ^

JOM KITA CUBA       

2 + 9/10 =

5/6 + 2 =

3/8 + 2 5/8 =

7 4/9 + 2/9 =

2 2/5 + 7 1/5 =

3 5/8 + 2 1/8 =

Banyak lagi latihan di SINI





Penambahan Pecahan (Bahagian 2)


Penambahan Pecahan (Bahagian 3)

HASIL PEMBELAJARAN

a) Menambah tiga nombor yang melibatkan nombor bercampur, nombor bulat  
dan pecahan wajar.
b) Menambah tiga nombor bercampur
c) Menyelesaikan masalah yang melibatkan penambahan nombor
 bercampur dalam situasi harian.

assalamualaikum 
dan selamat sejahtera
ADIK-ADIK!!

~ moga sentiasa sihat, ya..

kali ini kita masih berada di bawah tajuk PENAMBAHAN

namun kali ini penambahan melibatkan 3 nombor

NOMBOR BULAT + NOMBOR BERCAMPUR + PECAHAN WAJAR


ok..
seterusnya
kita teruskan dengan penambahan

NOMBOR BERCAMPUR + NOMBOR BERCAMPUR + NOMBOR BERCAMPUR


bagus adik-adik!!
sekarang adik-adik sudah mempelajari konsep penambahan..

untuk menguasai topik ini, adik perlu banyakkan membuat latihan
cuba adik-adik selesaikan soalan ini:

4  3/7 + 9/8 + 3 =
1/3 + 6 + 7 5/6 =
3  3/8 + 2  5/6 + 5 2/3 =
3 1/9 + 1 2/3 + 2  1/6 =
untuk banyakkan lagi latihan adik-adik sila klik SINI

adik-adik juga boleh cuba latihan yang terdapat di SINI

TAHUKAH ADIK-ADIK?

Penambahan  pecahan boleh digunakan
 dalam kehidupan kita sehari-hari.
sebagai contoh:

situasi 1

Segelas air mampu diisi sebanyak 250ml air. Aman, Adi dan Athirah masing-masing telah menggunakan cawan tersebut untuk minum.Aman telah menghabiskan kesemua air dan menambah sebanyak 1/2 lagi air yang dituang, Adi pula minum  1 2/3 air daripada cawan tersebut. Athirah pula hanya minum 1 1/4 air. Berapakah jumlah air dalam ml yang telah dihabiskan oleh mereka bertiga?

adik-adik perlu tahu!!

Aman - segelas dan 1/2 lagi = 1 1/2 x 250 ml
                                             = 375 ml            

Adi - 1 2/3 air = 1 2/3 x 250ml   
                           = 416.67 ml      

Athirah- 1 1/4 air =  1 1/4 x 250ml
                               = 312.5 ml       

Jumlah air yang diminum:               
     = 375ml + 416.67ml + 312.5 ml
     = 1104.17 ml                              

situasi 2

Ismail telah bercadang untuk membeli barang keperluannya di sekolah. Ibunya telah membekalkan wang sebanyak RM150 untuk kegunaannya itu. Di dalam perjalanan dia telah singgah ke kedai kasut. Di sana dia telah menghabiskan 1/2 daripada duit yang dibekalkan oleh ibunya untuk membeli sepasang kasut bola. Di kedai yang lain, dia telah menggunakan 1/5 daripada wang tadi untuk membeli beg sekolah dan 1 1/8 daripada harga beg sekolah tadi untuk buku dan alat-alat tulis. Berapakah duit yang telah dibelanjakan oleh Ismail?

KELUARKAN SEMUA KATA KUNCI

Jumlah duit yang dibekalkan = RM 150

HARGA BARANG YANG DIBELI
Kasut bola = 1/2 x RM150
                  = RM 75

Beg sekolah = 1/5 x RM 150
                     = RM 30

Buku dan alat-alat tulis = 1 1/8 x RM 30
                                      = RM 33.75

Jumlah Perbelanjaan = kasut bola + beg sekolah + buku dan alat tulis
                                  = RM 75 + RM 30 + RM 33.75
                                  = RM 138.75

Mudahkan adik-adik...
jadi..
untuk lebih mahir..
banyakkanlah membuat latihan..

semoga adik-adik dipermudahkan untuk memahami topik ini

                        

Tips Penolakan Pecahan (Bahagian 2)

Penolakan pecahan daripada nombor bulat atau nombor bercampur ada cara-cara tertentu menyelesaikannya. Berikut adalah langkah-langkah yang boleh diikuti:  

a)Apabila menolak pecahan daripada 1, tukarkan nombor bulat kepada pecahan. Contoh: 
b)Apabila menolak nombor bercampur yang mempunyai penyebut sama nilai, kekalkan penyebutnya dan tolakkan pengangkanya.
Contoh:

c)

Apabila kedua-dua pecahan adalah nombor bercampur, tolakkan nombor bulat terlebih dahulu. Kemudian tolakkan pecahan.
Contoh:
 

d)

Apabila menolak dua nombor bercampur, tolakkan nombor bulat dahulu kemudian tolakkan nombor pecahan. Jika penyebutnya tidak sama, tukarkan kepada pecahan setara.
Contoh:
 

e)

Apabila menolak dua nombor bercampur, tolakkan nombor bulat dahulu kemudian tolakkan nombor pecahan. Jika terpaksa mengumpul semula, lakukan mengumpul semula dengan mendapatkan nilai satu daripada nombor bulat. Contoh:
f)Jika menolak pecahan daripada nombor bulat, tukarkan nombor bulat kepada pecahan.
Contoh:
 

g)

Jika menolak nombor bercampur daripada nombor bulat, tukarkan nombor bulat kepada pecahan.
Contoh:
 



Operasi Bergabung Tambah dan Tolak Melibatkan Pecahan (bahagian 1)

HASIL PEMBELAJARAN

-Mencari hasil operasi bergabung tambah dan tolak yang melibatkan nombor bercampur, penyebut pecahannya sama hingga 10.
- Mencari hasil operasi bergabung tambah dan tolak yang melibatkan nombor bercampur, penyebut pecahannya tidak sama hingga 10.

adik-adik sudah tentu masih ingat bukan?
PENAMBAHAN dan PENOLAKAN 
pecahan

pembelajaran hari ini akan menggabungkan
 kedua-dua operasi
TAMBAH dan TOLAK

kita lihat contoh untuk soalan yang melibatkan
NOMBOR BERCAMPUR , PENYEBUT PECAHAN SAMA


adik-adik
ketahuilah..
konsep operasi bergabung ini juga sama seperti 
operasi tambah dan tolak..
kita asingkan nombor bulat dengan pecahan..
kemudian selesaikan satu-persatu..

( 2 + 3 - 1 ) + (2/5 + 1/5 - 2/5)
= (5 - 1) + ( 3/5 - 2/5)
= 4  1/5

MUDAH BUKAN??
seterusnya...kita akan belajar operasi bercampur lagi..

namun..
kali ini melibatkan

NOMBOR BERCAMPUR DAN PENYEBUTNYA TIDAK SAMA


sepertimana operasi tambah dan tolak, 
pastikan penyebut pecahan sama terlebih dahulu 
sebelum menolak mahupun menambah pecahan tersebut.

semoga adik-adik mudah memahami apa yang diajar~



Operasi Bergabung Tambah dan Tolak Melibatkan Pecahan (bahagian 2)

HASIL PEMBELAJARAN

-Menyelesaikan masalah operasi bergabung tambah dan tolak yang melibatkan nombor bercampur dalam situasi harian.

adik-adik...
tentu adik-adik masih ingatkan..
pecahan juga berkait rapat dengan kehidupan seharian kita..

tidak ketinggalan walaupun pecahan tersebut 
terdiri daripada operasi 
tambah dan tolak

jom kita lihat contoh

contoh :

Marina mempunyai sebalang guli yang berwarna-warni. Balang tersebut mengandungi 250 biji guli. Ayahnya telah memberikannya      1 1/5 daripada jumlah guli yang dia ada sebagai hadiah. Namun begitu, selepas bermain bersama rakannya dia mendapati gulinyahilang sebanyak 1 6/25 daripada jumlah yang asal. Berapakahjumlah guli yang dimilikinya sekarang?

Langkah pertama ialah keluarkan semua isi penting:

Jumlah asal guli = 250
Hadiah dari ayah = 1 1/5 x 250
                          = 300
Hilang =  1  6/25 x 250
          = 310

Jumlah yang tinggal = jumlah asal guli + hadiah dari ayah - hilang
                              = 250 + 300 - 310
                              = 240

mudah bukan..
adik-adik..
jangan lupa ulangkaji, ya...

semoga dipermudahkan untuk memahami topik ini~




Contoh Soalan Penolakan Pecahan Tahun 6

Soalan 1

Lina mempunyai sehelai kain 10 m panjang. Dia menggunakan 2 m dan 31/4  m . Berapakah panjang kain yang Lina ada sekarang?

Jawapan


10 –  2  – 3  1/4

 = (40  –  8 –  13) / 4 

=  19/4

 = 4 3/4

Operasi Melibatkan Pecahan Bercampur

Matematik adalah mudah sekiranya  adik-adik dapat mengikuti langkah-langkah yang betul dalam proses penyelesaian.

Di bawah merupakan langkah-langkah bagi  menambah pecahan bercampur(improper fractions).

Bagaimanakah untuk menambah nombor dibawah?

Ohhh.. ianya satu soalah yang sangat mudah!
Ini adalah contoh mudah. 

 Bagaimana pula jika operasi melibatkan nombor bercampur dikedua-dua bahagian? 
Perkara inilah yang selalu menimbulkan masalah kepada adik-adik.

Contoh:

Langkah penyelesaian:
Tukarkan kedua-dua pecahan kepada pecahan tidak wajar 
(improper fractions)

Perlu ambil perhatian. 
Penambahan pecahan bercampur di atas melibatkan nombor penyebut yang berlainan. 

Samakan penyebut. 
Jangan lupa mendarabkan pengangka sama seperti penyebut.

Selesaikan

Jawapan


Jawapan akhir:

~semoga adik-adik dipermudahkan untuk memahaminya~

tips matematik upsr

KERTAS 1

Seperti yang calon sedia maklum, kertas ini mengandungi 40 soalan objektif. Soalannya boleh dikategorikan dua jenis, iaitu bentuk persamaan dan penyelesaian masalah.

Lapan hingga sepuluh soalan disoal dalam bentuk persamaan membabitkan nombor dan simbol matematik. Soalan jenis ini boleh dianggap mudah dan calon hanya perlu berhati-hati ketika membuat pengiraan seperti meletak nombor pada nilai tempat, meletak titik perpuluhan di tempat yang betul, mengikut peraturan pengiraan yang betul, contohnya BODMAS, membuat penukaran unit dengan tepat dan berhati-hati ketika membuat pengumpulan semula. 


Dalam lingkungan 30 lagi soalan adalah jenis penyelesaian masalah yang boleh dilihat dalam dua bentuk penyoalan, iaitu ayat sepenuhnya dan sebahagian dibantu rajah, jadual, graf dan gambar.
Sebelum menjawab, calon perlu membaca soalan sekurang-kurangnya dua kali. Kenal pasti maklumat terdapat dalam soalan. Biasanya soalan penyelesaian masalah mempunyai lebih daripada satu maklumat. Gariskan maklumat penting itu. 

Calon juga perlu mengecam kata kunci dalam soalan, contohnya ‘bakinya’, ‘yang tinggal’, ‘diberikan sama banyak’, ‘simpanan’, ‘untung’, ‘rugi’, ‘diskaun’ dan sebagainya. 

Perkara penting calon perlu tahu ialah apakah kehendak soalan. Persoalan inilah yang perlu calon jawab. Kehendak soalan ada dalam ayat terakhir.
Setelah mengenal pasti maklumat, kata kunci dan kehendak soalan, rancang pula langkah pengiraannya. 

Ayat kedua setiap soalan lazimnya merujuk kepada maklumat untuk membuat pengiraan. Perkataan sebelum atau selepas angka dikemukakan lazimnya membantu calon menentukan operasinya (tambah, tolak, darab dan bahagi).
Setelah itu tukarkan ayat pernyataan soalan ke dalam bentuk ayat matematik. Pastikan operasi betul digunakan untuk membuat pengiraan. 

Perlu diingat, bagi menjawab soalan penyelesaian masalah, calon perlu lebih daripada satu operasi dan jalan kerja. Bagi soalan membabitkan sukatan, pastikan unit disamakan terlebih dulu. 

Soalan jenis penyelesaian masalah juga banyak dibantu rajah, graf, jadual dan gambar yang memerlukan calon membuat penelitian kerana sebahagian maklumat ada pada rajah disertakan, manakala sebahagian maklumat lagi dalam pernyataan soalan. 

Contoh;
Pak Abu has 400 durians. He gives 1/5 of the total number of durians to hos neighbours. He sells 3/4 of the remainder. What percentage of the durians is left?
Pak Abu ada 400 durian. Dia memberikan 1/5 daripada jumlah durian itu kepada jiran-jirannya. Dia menjual 3/4 daripada baki durian itu. Berapakah peratus durian yang tinggal? 

A. 5 B. 20 C. 80 D. 240 

Seperti disarankan, baca soalan sekurang-kurangnya dua kali dan kenal pasti maklumat dan kata kunci soalan. 

Tiga maklumat utama, iaitu;
(i) Pak Abu ada 400 durian
(ii) Dia memberikan 1/5 daripada jumlah durian itu kepada jiran-jirannya.
(iii) Dia menjual 3/4 daripada baki durian itu.

Kata kunci ialah baki (remainder), peratus (percentage) dan yang tinggal (left). Kemudian, lihat kehendak soalan. Ayat terakhir soalan ini meminta calon mencari peratus durian yang tinggal. Langkah pertama, cari jumlah durian Pak Abu beri kepada jirannya, iaitu:

1
-- x 400 = 80
5

Seterusnya cari jumlah durian dijual Pak Abu. Perkataan baki (remainder) adalah kata kunci yang amat penting dalam ayat ini. Pengiraan yang betul ialah:

3
-- x ( 400 - 80 ) = 240
4

Langkah seterusnya calon mencari jumlah durian yang tinggal, iaitu:
400 - 80 - 240 = 80

Pada peringkat ini, langkah pengiraan belum lagi selesai. Jika ada calon menjawab 80 sebagai pilihan jawapan, maka ia salah. Ada satu lagi langkah pengiraan yang perlu calon lakukan Iaitu tukarkan kuantiti durian yang tinggal itu kepada peratus, iaitu;
80
----- x 100% = 20%
400

Jawapan: B (20)
Kesilapan yang biasa dilakukan oleh calon ialah ketika membuat pengiraan pada langkah kedua. Ada calon mencari bilangan durian yang dijual berdasarkan jumlah asal durian Pak Abu, iaitu:
3
-- x 400 = 300
4
Seterusnya calon mencari jumlah durian yang tinggal, iaitu:

400 - 80 - 300 = 20
Kemudian calon menukarkannya kepada peratus iaitu:

20
---- x 100% = 5%
400

Antara kelemahan yang sering dilakukan calon ialah:

a) Membaca soalan dan terus mengira mengikut kefahaman sendiri.
b) Tidak membuat penelitian terhadap ayat terakhir dan mencari kehendak soalan.
c) Terlalu cepat membaca soalan hingga tertinggal maklumat.
d) Tidak merujuk rajah, graf, jadual dan gambar diberikan.
e) Terus membuat pengiraan tanpa menyemak semula.
f) Kurang membina ayat matematik sebelum memulakan pengiraan.
g) Lemah membuat tafsiran terhadap perkataan atau ayat yang digunakan.

KERTAS 2
Sebahagian besar calon menganggap Kertas 2 mudah berbanding Kertas 1. Pada dasarnya tanggapan itu benar tetapi perlu diingat ia banyak mempengaruhi kedudukan gred keseluruhan bagi subjek Matematik.
Jika kurang mahir menjawab Kertas 2, besar kemungkinan calon akan melakukan kesilapan sewaktu memberikan jawapan.
Ramai calon gagal mentafsir kehendak soalan terutama bagi jenis penyelesaian masalah. Malah, ada yang tidak dapat menukar masalah dikemukakan dalam soalan ke bentuk ayat matematik.
Contoh:

50 biji kek diberikan kepada Adirah dan Izzaty. Adirah mendapat 10 biji lebih daripada Izzaty. Berapakah bilangan kek yang Izzaty dapat?

Calon kerap menulis ayat matematik seperti berikut:
50 ÷ 2 - 10 =

Langkah menjawab: 25 - 10 = 15

     25
   -------
2 ) 50
  - 4
    ---
    10
  - 10
    ---
Jawapan yang diberikan adalah SALAH.
Langkah yang betul adalah seperti berikut:
( 50 - 10 ) ÷ 2 =
50 - 10 = 40 
40
--- = 20
2
Jawapan: 20
Maka, Adirah 30 dan Izzaty 20
Bagi soalan bentuk persamaan atau terus pula, calon gagal menguasai konsep pengiraan sebahagiannya memerlukan beberapa langkah pengiraan sebelum memperoleh jawapan.
Sebagai contoh:
Convert 109% to a mixed number.

Calon kerap memilih 109% adalah
109        9
---- = 1 --- (jawapan adalah salah)
100       10
Sebenarnya 9% adalah per seratus (hundredths) maka calon perlu menulis:
             109
109% = -----
             100
Sejumlah 20 soalan dikemukakan dalam Kertas 2. Antara cirinya ialah bentuk subjektif, perlu menulis langkah pengiraan dengan jelas bagi mendapatkan jawapan. Pemarkahannya berdasarkan tiga aras, iaitu satu markah (5 soalan), dua markah (10 soalan) dan tiga markah (5 soalan).
Kesilapan sering dilakukan calon ialah kurang tumpuan dan tidak menunjukkan langkah pengiraan yang jelas. Perhatikan jawapan calon berdasarkan contoh soalan berikut:
State the digit value of 6 in the number 0.67 million.
Nyatakan nilai digit angka 6 dalam nombor 0.67 juta.

Jawapan calon:

60 atau Enam puluh / Sixty or 60

Jawapan diberi salah. Sebabnya calon kurang tumpuan tentang titik perpuluhan mewakili juta/million). Jawapan tepat ialah perpuluhan (decimal) melibatkan juta (million) perlu ada 7 digit dari kiri ke kanan, iaitu:
0.67 million = 0 670 000
600 000

Kesilapan lain sering dilakukan ialah menjawab dalam pecahan (fraction)
6
--- million
10

Langkah pengiraan perlu ditunjukkan dengan jelas dan tepat mengikut unit diperlukan dalam jawapan.

Soalan dua dan tiga markah agak mudah kerana penyoalannya tidak menggunakan ayat terlalu panjang. Banyak soalan dibantu rajah dan gambar. Ini memudahkan calon memahami kehendak soalan.

Bagi soalan tiga markah, hampir kesemuanya membabitkan rajah dan jadual. Untuk soalan ini, pastikan pengiraan atau maklumat awal digunakan dalam pengiraan tidak salah nilai. Kesilapan ini menyebabkan pengiraan seterusnya menjadi salah.

Secara keseluruhan, calon perlu memberi tumpuan terhadap soalan yang menggunakan ayat dan rajah.

Kesilapan kerap berlaku dikaitkan dengan kegagalan calon memahami maksud ayat terakhir atau memberikan jawapan selepas langkah pengiraan dilakukan, sedangkan jawapan sebenar setelah langkah kedua atau ketiga.